green roof

Deploying Shipping Containers for Innovative Living Architecture Design Education

Academic training and investigation for innovative living architecture demands educational
settings be conceptual, experiential, and cost effective. To assist, we advance the idea that
shipping containers offer an acceptable setting for faculty and students investigating kinetic
forms of living architecture and opportunities for reflective thinking. Described here are three
separate, uncoordinated academic engagements exploring moving, sliding and mobile green
roofs and walls on shipping containers that occured in the design studio, field laboratory, and
public setting. When collectively viewed, the outcomes of the projects indicate a positive use of
shipping containers as conceptual and participatory spaces for living architecture education and
innovation.

Green Roof Plant Trials for the Central Great Plains

Forty-three taxa representing native and adaptable plants were trialed for 4 years on an irrigated
(as needed) 15 cm (6 inch) deep extensive green roof in Lincoln, NE. Twenty-three of the taxa
showed good performance with minimal maintenance. At the end of the trial in fall 2014, 32 of
the taxa still had at least one specimen surviving. Drought impacts in the trial’s second year
eliminated several taxa. Presented here are results and the positive findings of four new extensive
green roof taxa, Festuca cinerea, Carex glauca, Eragrostis trichodes, and Distichilis spicata

Insect Communities On Green Roofs that are Close in Proximity but Vary in Age and Plant Coverage

The effects of roof age and plant coverage on insect communities were investigated between three green roofs located on the campus of Southern Illinois University Edwardsville. Insect collections were made using pitfall traps on green roofs that were established between 0.5 month and five years prior to insect collection. The green roof with the greatest insect collection rate was the oldest but intermediate in size and percent plant coverage. The oldest green roof had similar collection rates as a nearby ground-level rain garden; however measures of species diversity and evenness were greater in the rain garden.

Observations on the Survival of 112 Plant Taxa on a Green Roof in a Semi-Arid Climate

The Denver Botanic Gardens (DBG) green roof, built in November 2007, is the first green roof on a city owned building in Denver, Colorado. To date, 112 plant taxa have been trialed, observed, and described on this low water green roof in the high and dry climate of the Colorado Front Range. Plant taxa survival was documented based on the original number of plants installed, and the surviving plants were rated on a scale of 1-4. Additionally, in 2011-2013, plant heights and widths were recorded. The data indicate that taxa can be grouped into categories of perish, survive, and thrive.

Living Architecture and Biological Dispersal

Many vegetative roof systems deliver biodiversity and conservation goals, but it may be less appreciated that roofs function as a nursery, exporting biological materials. Interestingly, we have observed one green roof performing two forms of plant dispersal, thus demonstrating the potential for vegetative roofs to offer nursery services to their surroundings. We describe the project, explain the dispersal strategies, provide a brief discussion, and define the terminology of terrestrial-roof link, agent dispersal, and self dispersal, in an effort to aid in understanding the nursery function of green roofs. Continuing and future research on the dispersal mechanisms of the roof are also briefly discussed.

Rethinking Extensive Green roofs to Lessen Emphasis on Above-Ground Biomass

In the future, most green roof applications will not be highly visible, yet these roofs will still provide the benefits of heat island reduction, stormwater control and biodiversity for hard-surfaced cities. However, human bias in wanting more biomass and visible blooms leads green roof horticulturalists and their approach of maximizing those aspects down a slippery slope that, in turn, leads to increased hours of labor, over-watering and fertilizing and specifying too many cultivars.